3.15.28 \(\int \frac {x^{15}}{(2+x^6)^{3/2}} \, dx\) [1428]

3.15.28.1 Optimal result
3.15.28.2 Mathematica [C] (verified)
3.15.28.3 Rubi [A] (verified)
3.15.28.4 Maple [C] (verified)
3.15.28.5 Fricas [C] (verification not implemented)
3.15.28.6 Sympy [A] (verification not implemented)
3.15.28.7 Maxima [F]
3.15.28.8 Giac [F]
3.15.28.9 Mupad [F(-1)]

3.15.28.1 Optimal result

Integrand size = 13, antiderivative size = 394 \[ \int \frac {x^{15}}{\left (2+x^6\right )^{3/2}} \, dx=-\frac {x^{10}}{3 \sqrt {2+x^6}}+\frac {10}{21} x^4 \sqrt {2+x^6}-\frac {80 \sqrt {2+x^6}}{21 \left (\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2\right )}+\frac {40 \sqrt [6]{2} \sqrt {2-\sqrt {3}} \left (\sqrt [3]{2}+x^2\right ) \sqrt {\frac {2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{2} \left (1-\sqrt {3}\right )+x^2}{\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2}\right )|-7-4 \sqrt {3}\right )}{7\ 3^{3/4} \sqrt {\frac {\sqrt [3]{2}+x^2}{\left (\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2\right )^2}} \sqrt {2+x^6}}-\frac {80\ 2^{2/3} \left (\sqrt [3]{2}+x^2\right ) \sqrt {\frac {2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{2} \left (1-\sqrt {3}\right )+x^2}{\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2}\right ),-7-4 \sqrt {3}\right )}{21 \sqrt [4]{3} \sqrt {\frac {\sqrt [3]{2}+x^2}{\left (\sqrt [3]{2} \left (1+\sqrt {3}\right )+x^2\right )^2}} \sqrt {2+x^6}} \]

output
-1/3*x^10/(x^6+2)^(1/2)+10/21*x^4*(x^6+2)^(1/2)-80/21*(x^6+2)^(1/2)/(x^2+2 
^(1/3)*(1+3^(1/2)))-80/63*2^(2/3)*(2^(1/3)+x^2)*EllipticF((x^2+2^(1/3)*(1- 
3^(1/2)))/(x^2+2^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*((2^(2/3)-2^(1/3)*x^2+x 
^4)/(x^2+2^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/(x^6+2)^(1/2)/((2^(1/3)+x^2 
)/(x^2+2^(1/3)*(1+3^(1/2)))^2)^(1/2)+40/21*2^(1/6)*3^(1/4)*(2^(1/3)+x^2)*E 
llipticE((x^2+2^(1/3)*(1-3^(1/2)))/(x^2+2^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I 
)*(1/2*6^(1/2)-1/2*2^(1/2))*((2^(2/3)-2^(1/3)*x^2+x^4)/(x^2+2^(1/3)*(1+3^( 
1/2)))^2)^(1/2)/(x^6+2)^(1/2)/((2^(1/3)+x^2)/(x^2+2^(1/3)*(1+3^(1/2)))^2)^ 
(1/2)
 
3.15.28.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.99 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.14 \[ \int \frac {x^{15}}{\left (2+x^6\right )^{3/2}} \, dx=\frac {x^4 \left (-20+x^6+10 \sqrt {2} \sqrt {2+x^6} \operatorname {Hypergeometric2F1}\left (\frac {2}{3},\frac {3}{2},\frac {5}{3},-\frac {x^6}{2}\right )\right )}{7 \sqrt {2+x^6}} \]

input
Integrate[x^15/(2 + x^6)^(3/2),x]
 
output
(x^4*(-20 + x^6 + 10*Sqrt[2]*Sqrt[2 + x^6]*Hypergeometric2F1[2/3, 3/2, 5/3 
, -1/2*x^6]))/(7*Sqrt[2 + x^6])
 
3.15.28.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 422, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {807, 817, 843, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{15}}{\left (x^6+2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 807

\(\displaystyle \frac {1}{2} \int \frac {x^{14}}{\left (x^6+2\right )^{3/2}}dx^2\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {1}{2} \left (\frac {10}{3} \int \frac {x^8}{\sqrt {x^6+2}}dx^2-\frac {2 x^{10}}{3 \sqrt {x^6+2}}\right )\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {1}{2} \left (\frac {10}{3} \left (\frac {2}{7} x^4 \sqrt {x^6+2}-\frac {8}{7} \int \frac {x^2}{\sqrt {x^6+2}}dx^2\right )-\frac {2 x^{10}}{3 \sqrt {x^6+2}}\right )\)

\(\Big \downarrow \) 832

\(\displaystyle \frac {1}{2} \left (\frac {10}{3} \left (\frac {2}{7} x^4 \sqrt {x^6+2}-\frac {8}{7} \left (\int \frac {x^2+\sqrt [3]{2} \left (1-\sqrt {3}\right )}{\sqrt {x^6+2}}dx^2-\sqrt [3]{2} \left (1-\sqrt {3}\right ) \int \frac {1}{\sqrt {x^6+2}}dx^2\right )\right )-\frac {2 x^{10}}{3 \sqrt {x^6+2}}\right )\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {1}{2} \left (\frac {10}{3} \left (\frac {2}{7} x^4 \sqrt {x^6+2}-\frac {8}{7} \left (\int \frac {x^2+\sqrt [3]{2} \left (1-\sqrt {3}\right )}{\sqrt {x^6+2}}dx^2-\frac {2 \sqrt [6]{2} \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x^2+\sqrt [3]{2} \left (1-\sqrt {3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} \sqrt {x^6+2}}\right )\right )-\frac {2 x^{10}}{3 \sqrt {x^6+2}}\right )\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {1}{2} \left (\frac {10}{3} \left (\frac {2}{7} x^4 \sqrt {x^6+2}-\frac {8}{7} \left (-\frac {2 \sqrt [6]{2} \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x^2+\sqrt [3]{2} \left (1-\sqrt {3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} \sqrt {x^6+2}}-\frac {\sqrt [6]{2} \sqrt [4]{3} \sqrt {2-\sqrt {3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} E\left (\arcsin \left (\frac {x^2+\sqrt [3]{2} \left (1-\sqrt {3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )\right )^2}} \sqrt {x^6+2}}+\frac {2 \sqrt {x^6+2}}{x^2+\sqrt [3]{2} \left (1+\sqrt {3}\right )}\right )\right )-\frac {2 x^{10}}{3 \sqrt {x^6+2}}\right )\)

input
Int[x^15/(2 + x^6)^(3/2),x]
 
output
((-2*x^10)/(3*Sqrt[2 + x^6]) + (10*((2*x^4*Sqrt[2 + x^6])/7 - (8*((2*Sqrt[ 
2 + x^6])/(2^(1/3)*(1 + Sqrt[3]) + x^2) - (2^(1/6)*3^(1/4)*Sqrt[2 - Sqrt[3 
]]*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 + x^4)/(2^(1/3)*(1 + Sqrt[3 
]) + x^2)^2]*EllipticE[ArcSin[(2^(1/3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + 
Sqrt[3]) + x^2)], -7 - 4*Sqrt[3]])/(Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqr 
t[3]) + x^2)^2]*Sqrt[2 + x^6]) - (2*2^(1/6)*(1 - Sqrt[3])*Sqrt[2 + Sqrt[3] 
]*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1/3)*x^2 + x^4)/(2^(1/3)*(1 + Sqrt[3] 
) + x^2)^2]*EllipticF[ArcSin[(2^(1/3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + S 
qrt[3]) + x^2)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(2^(1/3) + x^2)/(2^(1/3)*( 
1 + Sqrt[3]) + x^2)^2]*Sqrt[2 + x^6])))/7))/3)/2
 

3.15.28.3.1 Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 807
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m 
+ 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, 
x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
3.15.28.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 7.51 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.05

method result size
meijerg \(\frac {\sqrt {2}\, x^{16} {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {3}{2},\frac {8}{3};\frac {11}{3};-\frac {x^{6}}{2}\right )}{64}\) \(20\)
risch \(\frac {x^{4} \left (3 x^{6}+20\right )}{21 \sqrt {x^{6}+2}}-\frac {10 \sqrt {2}\, x^{4} {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{2},\frac {2}{3};\frac {5}{3};-\frac {x^{6}}{2}\right )}{21}\) \(40\)

input
int(x^15/(x^6+2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/64*2^(1/2)*x^16*hypergeom([3/2,8/3],[11/3],-1/2*x^6)
 
3.15.28.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.11 \[ \int \frac {x^{15}}{\left (2+x^6\right )^{3/2}} \, dx=\frac {80 \, {\left (x^{6} + 2\right )} {\rm weierstrassZeta}\left (0, -8, {\rm weierstrassPInverse}\left (0, -8, x^{2}\right )\right ) + {\left (3 \, x^{10} + 20 \, x^{4}\right )} \sqrt {x^{6} + 2}}{21 \, {\left (x^{6} + 2\right )}} \]

input
integrate(x^15/(x^6+2)^(3/2),x, algorithm="fricas")
 
output
1/21*(80*(x^6 + 2)*weierstrassZeta(0, -8, weierstrassPInverse(0, -8, x^2)) 
 + (3*x^10 + 20*x^4)*sqrt(x^6 + 2))/(x^6 + 2)
 
3.15.28.6 Sympy [A] (verification not implemented)

Time = 0.76 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.09 \[ \int \frac {x^{15}}{\left (2+x^6\right )^{3/2}} \, dx=\frac {\sqrt {2} x^{16} \Gamma \left (\frac {8}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {8}{3} \\ \frac {11}{3} \end {matrix}\middle | {\frac {x^{6} e^{i \pi }}{2}} \right )}}{24 \Gamma \left (\frac {11}{3}\right )} \]

input
integrate(x**15/(x**6+2)**(3/2),x)
 
output
sqrt(2)*x**16*gamma(8/3)*hyper((3/2, 8/3), (11/3,), x**6*exp_polar(I*pi)/2 
)/(24*gamma(11/3))
 
3.15.28.7 Maxima [F]

\[ \int \frac {x^{15}}{\left (2+x^6\right )^{3/2}} \, dx=\int { \frac {x^{15}}{{\left (x^{6} + 2\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^15/(x^6+2)^(3/2),x, algorithm="maxima")
 
output
integrate(x^15/(x^6 + 2)^(3/2), x)
 
3.15.28.8 Giac [F]

\[ \int \frac {x^{15}}{\left (2+x^6\right )^{3/2}} \, dx=\int { \frac {x^{15}}{{\left (x^{6} + 2\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^15/(x^6+2)^(3/2),x, algorithm="giac")
 
output
integrate(x^15/(x^6 + 2)^(3/2), x)
 
3.15.28.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^{15}}{\left (2+x^6\right )^{3/2}} \, dx=\int \frac {x^{15}}{{\left (x^6+2\right )}^{3/2}} \,d x \]

input
int(x^15/(x^6 + 2)^(3/2),x)
 
output
int(x^15/(x^6 + 2)^(3/2), x)